Multiple Hypothesis Colorization

نویسندگان

  • Mohammad Haris Baig
  • Lorenzo Torresani
چکیده

In this work we focus on the problem of colorization for image compression. Since color information occupies a large proportion of the total storage size of an image, a method that can predict accurate color from its grayscale version can produce a dramatic reduction in image file size. But colorization for compression poses several challenges. First, while colorization for artistic purposes simply involves predicting plausible chroma, colorization for compression requires generating output colors that are as close as possible to the ground truth. Second, many objects in the real world exhibit multiple possible colors. Thus, in order to disambiguate the colorization problem some additional information must be stored to reproduce the true colors with good accuracy. To account for the multimodal color distribution of objects we propose a deep tree-structured network that generates for every pixel multiple color hypotheses, as opposed to a single color produced by most prior colorization approaches. We show how to leverage the multimodal output of our model to reproduce with high fidelity the true colors of an image by storing very little additional information. In the experiments we show that our proposed method outperforms traditional JPEG color coding by a large margin, producing colors that are nearly indistinguishable from the ground truth at the storage cost of just a few hundred bytes for high-resolution pictures!

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PixColor: Pixel Recursive Colorization

We propose a novel approach to automatically produce multiple colorized versions of a grayscale image. Our method results from the observation that the task of automated colorization is relatively easy given a low-resolution version of the color image. We first train a conditional PixelCNN to generate a low resolution color for a given grayscale image. Then, given the generated low-resolution c...

متن کامل

An Analysis on Colorization-Based Compression Techniques

In colorization-based coding the encoder picks a couple of representative pixels (RP) for which the chrominance values and the positions are sent to the decoder, although in the decoder, the chrominance values for all the pixels are recreated by colorization techniques. The fundamental issue in colorization-based coding is the manner by which to obtain the RP well in this manner the compression...

متن کامل

Epitome for Automatic Image Colorization

Image colorization adds color to grayscale images. It not only increases the visual appeal of grayscale images, but also enriches the information contained in scientific images that lack color information. Most existing methods of colorization require laborious user interaction for scribbles or image segmentation. To eliminate the need for human labor, we develop an automatic image colorization...

متن کامل

Interactive Image Colorization and Recoloring based on Coupled Map Lattices

Colorization is a computer-assisted process of adding color to a monochrome image or movie. Most current colorization algorithms either require a significant user effort or have large computational time. In any case, colorization of real size images remains a time-consuming, tedious task. In this paper we present a new colorization method, based on GrowCut image segmentation algorithm. In our a...

متن کامل

Automatic colorization of videos

Realistic colorization of videos has been of great interest to the artistic community, primarily for restoring historical color films and colorizing legacy videos. In this project, we experimented with several methods in order to automatically colorize videos on a frame-by-frame basis. We focused on rectifying two primary issues encountered with video colorizations : lack of color consistency b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016